";s:4:"text";s:3144:" DOI 10.1145/2365952.2365967.
URL Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. ACM, New York, NY, USA (2011). DOI 10.1145/2124295.2124337. of the 17th WWW, WWW ‘08, pp. ACM, New York, NY, USA (2008). DOI 10.1145/2187980.2188137. DOI 10.1145/1102351.1102363.
AUAI Press, Arlington, Virginia, United States (2009). URL Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. ACM, New York, NY, USA (2008). : Directly optimizing evaluation measures in learning to rank. ACM, New York, NY, USA (2009). URL Xu, J., Liu, T.Y., Lu, M., Li, H., Ma, W.Y. URL Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M. : Temporal collaborative filtering with bayesian probabilistic tensor factorization. DOI 10.1145/1772690.1772758. of RecSys ‘11, RecSys ‘11. URL Burke, R.: The adaptive web. : Greedy function approximation: a gradient boosting machine. DOI 10.1145/1401890.1401944. DOI 10.1145/1367497.1367525. URL Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering.
of SIGIR ‘07, SIGIR ‘07, pp.
of the 25th ICML, ICML ‘08, pp. With the new streaming service, Netflix customers could browse a detailed digital movie catalog and press play in a second with no need for a physical DVD. ACM, New York, NY, USA (2011).
11–18. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ‘12, pp. ACM, New York, NY, USA (2013). DOI 10.1145/223904.223931. Netflix has been extending the customer journey via cross-platform partnerships. 113–122. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ‘10, pp. Case Study: Development of Netflix How Netflix started as a small DVD rental service, and changed its course to become the most successful online streaming platform we know today.
URL Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. ACM, New York, NY, USA (2011). In: Proc. Group Members: Harsh Kumar Chourasia (17312011) Parth Kohli (17312019) Rishav Anand (17312021) Savish Bedi … 377–408 (2007). In: Proc of ICML ‘07. 713–722. 681–690. Bourke, S., McCarthy, K., Smyth, B.: Power to the people: exploring neighbourhood formations in social recommender system. IEEE Internet Computing Liu, J., Pedersen, E., Dolan, P.: Personalized news recommendation based on click behavior. Journal of the American Statistical Association Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to Rank by Optimizing NDCG Measure. URL Radlinski, F., Kurup, M., Joachims, T.: How does clickthrough data reflect retrieval quality? Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback Datasets. URL Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T. In: Proc. URL Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. In: Proceedings of the 25th UAI, UAI ‘09, pp. ACM, New York, NY, USA (2012).